Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochemistry ; 61(13): 1392-1403, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1900399

ABSTRACT

The two RNA-dependent RNA polymerase inhibitors remdesivir and favipiravir were originally developed and approved as broad-spectrum antiviral drugs for the treatment of harmful viral infections such as Ebola and influenza. With the outbreak of the global SARS-CoV-2 pandemic, the two drugs were repurposed for the treatment of COVID-19 patients. Clinical studies suggested that the efficacy of the drugs is enhanced in the case of an early or even prophylactic application. Because the contact between drug molecules and the plasma membrane is essential for a successful permeation process of the substances and therefore for their intracellular efficiency, drug-induced effects on the membrane structure are likely and have already been shown for other substances. We investigated the impact of remdesivir and favipiravir on lipid bilayers in model and cell membranes via several biophysical approaches. The measurements revealed that the embedding of remdesivir molecules in the lipid bilayer results in a disturbance of the membrane structure of the tested phospholipid vesicles. Nevertheless, in a cell-based assay, the presence of remdesivir induced only weak hemolysis of the treated erythrocytes. In contrast, no experimental indication for an effect on the structure and integrity of the membrane was detected in the case of favipiravir. Regarding potential prophylactic or accompanying use of the drugs in the therapy of COVID-19, the physiologically relevant impacts associated with the drug-induced structural modifications of the membrane might be important to understand side effects and/or low effectivities.


Subject(s)
COVID-19 Drug Treatment , Lipid Bilayers , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Amides , Antiviral Agents/chemistry , Humans , Pyrazines , RNA-Dependent RNA Polymerase , SARS-CoV-2
2.
Biochem Biophys Rep ; 24: 100838, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023478

ABSTRACT

Ruxolitinib is a small-molecule protein kinase inhibitor, which is used as a therapeutic agent against several diseases. Due to its anti-inflammatory impact, ruxolitinib has also been considered recently for usage in the treatment of Covid-19. While the specific effects of ruxolitinib on Janus kinases (JAK) is comparatively well investigated, its (unspecific) impact on membranes has not been studied in detail so far. Therefore, we characterized the interaction of this drug with lipid membranes employing different biophysical approaches. Ruxolitinib incorporates into the glycerol region of lipid membranes causing an increase in disorder of the lipid chains. This binding, however, has only marginal influence on the structure and integrity of membranes as found by leakage and permeation assays.

SELECTION OF CITATIONS
SEARCH DETAIL